CITREGEN Technology
®
Inspired by nature, CITREGEN is a paradigm-changing synthetic biomaterial purposefully designed on a molecular level to replicate the intrinsic cellular support network. CITREGEN's main component, citrate, is historically known as a naturally occurring metabolic molecule but has recently been shown to play important roles in bone anatomy.
Citrate
Citrate is a naturally occurring molecule found in the body and citrus fruits. It plays a large role in aerobic energy production and bone anatomy. In biomaterial science, citrate chemistry allows for polymer chain crosslinking and improves bioceramic interactions.¹
CITREGEN's chemistry contains citrate, calcium, and phosphate molecules inherent to bone anatomy, provides polymer chain crosslinking to mimic the native ECM architecture, and allows for a homogeneous dispersion of up to 65 wt.-% bioceramic matching the native bone mineral content.²
ECM
CELL
crosslinks
bioceramic
polymer chains
calcium chelation
CITREGEN's crosslinked structure provides elasticity and demonstrates recovery from compressive loads that would cause thermoplastics to permanently deform. Even with a high bioceramic content, CITREGEN composites retain their toughness withstanding large mechanical loads and strain.³
²
CITREGEN
²
PLDLA
CITREGEN resorption begins with polymer hydrolysis releasing citrate, calcium, and phosphate molecules. The remaining bioceramic structure is naturally metabolized during bone remodeling. This controlled and homogeneous resorption process prevents bulk degradation and chronic inflammation.²
Day 1
The biomimetic implant is replaced by the normal tissue anatomy.
Mid-Stage
Citrate, calcium, and phosphate are released to the surrounding tissue.
Late-Stage
Polymer resorption continues as the bioceramic becomes metabolized.
A sheep study at Colorado State University showed evidence of biocompatibility and biologic ingrowth into porous CITREGEN implants, absent of any signs of chronic inflammation.²
¹ Richard T. Tran, Jian Yang, and Guillermo A. Ameer. Citrate-Based Biomaterials and Their Applications in Regenerative Engineering. Annual Review of Materials Research 2015, 45: 277-310
² Data on file at ATI
³ Jian Yang, Antonio R. Webb, Samuel J. Pickerill, Gretchen Hageman, Guillermo A. Ameer. Synthesis and evaluation of poly(diol citrates) biodegradable elastomer. Biomaterials 2006,27: 1889-1898
​